Inhaltsverzeichnis

Einleitung ... 15

Teil I Grundlagen ... 25

1 Orientierung .. 27
 1.1 Kommerzielle IDEs .. 27
 1.1.1 Keil µVision .. 28
 1.1.2 IAR Workbench ... 28
 1.1.3 Sourcery Codebench .. 28
 1.1.4 Atollic TrueSTUDIO .. 29
 1.1.5 CrossWorks for ARM ... 29
 1.2 Herstellergebundene IDEs .. 30
 1.2.1 ATMEL Studio 6 ... 30
 1.2.2 Texas Instruments StellarisWare ... 30
 1.2.3 STMicroelectronics STVD .. 31
 1.3 Freie IDEs ... 31
 1.3.1 CooCox CoIDE ... 31
 1.3.2 NetBeans for C Developers .. 31
 1.3.3 Code::Blocks ... 32
 1.3.4 emIDE .. 32
 1.3.5 Eclipse für C/C++-Entwickler ... 32
 1.4 Vorbereitende Arbeiten .. 33
 1.4.1 Hardware ... 34
 1.4.2 Software .. 37

2 ARM und CMSIS .. 53
 2.1 Einige Hintergrundinformationen .. 53
 2.1.1 Die Firma ARM Holdings PLC ... 53
 2.1.2 Das Geschäftsmodell .. 53
 2.2 CMSIS ... 54
 2.2.1 Implementierungen ... 54
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
</tr>
<tr>
<td>Erzeugung der Bibliotheken</td>
</tr>
<tr>
<td>2.3.1</td>
</tr>
<tr>
<td>libboard: Die Bibliothek für das Entwicklungsboard</td>
</tr>
<tr>
<td>2.3.2</td>
</tr>
<tr>
<td>libchip: Die Bibliothek für den Mikrocontroller-Chip</td>
</tr>
<tr>
<td>2.4</td>
</tr>
<tr>
<td>Weitere Software installieren</td>
</tr>
<tr>
<td>2.4.1</td>
</tr>
<tr>
<td>SAM-BA</td>
</tr>
<tr>
<td>2.4.2</td>
</tr>
<tr>
<td>SEGGER J-Link GDB Server via JTAG</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Das erste Eclipse-Projekt</td>
</tr>
<tr>
<td>3.1</td>
</tr>
<tr>
<td>Erstellen einer Projektschablone</td>
</tr>
<tr>
<td>3.1.1</td>
</tr>
<tr>
<td>Workspace einrichten</td>
</tr>
<tr>
<td>3.1.2</td>
</tr>
<tr>
<td>Anlegen eines neuen Projekts</td>
</tr>
<tr>
<td>3.1.3</td>
</tr>
<tr>
<td>Projektspezifische Einstellungen</td>
</tr>
<tr>
<td>3.1.4</td>
</tr>
<tr>
<td>C/C++ Build: Settings</td>
</tr>
<tr>
<td>3.2</td>
</tr>
<tr>
<td>Weitere erforderliche Dateien</td>
</tr>
<tr>
<td>3.2.1</td>
</tr>
<tr>
<td>board_cstartup_gnu.c und syscalls.c</td>
</tr>
<tr>
<td>3.2.2</td>
</tr>
<tr>
<td>Linkerscriptdateien</td>
</tr>
<tr>
<td>3.3</td>
</tr>
<tr>
<td>Konfiguration des Debuggers</td>
</tr>
<tr>
<td>3.4</td>
</tr>
<tr>
<td>Fertigstellen des Templates</td>
</tr>
<tr>
<td>3.4.1</td>
</tr>
<tr>
<td>Anwendung der Erweiterung</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>Hello World!</td>
</tr>
<tr>
<td>4.1</td>
</tr>
<tr>
<td>Grundlegende Hinweise</td>
</tr>
<tr>
<td>4.2</td>
</tr>
<tr>
<td>Erstellen des Projekts 04_01_Blinky</td>
</tr>
<tr>
<td>4.2.1</td>
</tr>
<tr>
<td>Importieren der Schablone</td>
</tr>
<tr>
<td>4.2.2</td>
</tr>
<tr>
<td>Der Sourcecode von Blinky</td>
</tr>
<tr>
<td>4.3</td>
</tr>
<tr>
<td>Blinky im Debugger ausführen</td>
</tr>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>Debugging light</td>
</tr>
<tr>
<td>4.4.1</td>
</tr>
<tr>
<td>Was Sie benötigen</td>
</tr>
<tr>
<td>4.4.2</td>
</tr>
<tr>
<td>Konfiguration der Schnittstelle</td>
</tr>
<tr>
<td>4.4.3</td>
</tr>
<tr>
<td>Programm laden und ausführen</td>
</tr>
<tr>
<td>4.4.4</td>
</tr>
<tr>
<td>Vorteile und Nachteile dieser Methode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teil II Einfache Grundlagen der Elektronik</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>Der ATMELE SAM3S4B</td>
</tr>
<tr>
<td>5.1</td>
</tr>
<tr>
<td>Die ATMELE-SAM3S-Familie</td>
</tr>
<tr>
<td>5.1.1</td>
</tr>
<tr>
<td>Übersicht</td>
</tr>
</tbody>
</table>

5.2 Das Datenblatt DOC 6500
5.2.1 Der Aufbau von DOC 6500
5.2.2 Mikrocontroller anderer Hersteller
5.3 Elektrische Daten des SAM3S4
5.3.1 Minimum- und Maximumwerte
5.3.2 Elektrische Versorgungsspannungen
5.3.3 Gleichstromwerte
5.4 System Controller
5.5 CHIP_ID
5.5.1 Das Projekt 05_01_CHIPID
5.5.2 Erläuterungen
5.6 Weiterführende Literatur
6 Elektronik
6.1 Digitale Ausgänge
6.1.1 Ports A, B und C im Reset-Zustand
6.2 Schalten kleiner Ströme
6.2.1 Current Sourcing
6.2.2 Current Sinking
6.2.3 Dimensionierung bei Current Sourcing und Current Sinking
6.2.4 Vor- und Nachteile beider Betriebsarten
6.3 Schalten größerer Ströme
6.3.1 Bipolare Transistoren
6.3.2 Feldeffekt-Transistoren (FETs)
6.3.3 Schalten mit Optokopplern
6.3.4 Schalten von Leistungstransistoren
6.3.5 Schalten induktiver Lasten (Relais, Elektromagnete, Motoren)
6.4 Digitale Eingänge
6.4.1 Grundlegende Betrachtungen
6.4.2 Einfachste Form der Beschaltung
6.4.3 Bessere Form der Beschaltung
6.4.4 Erfassen größerer Spannungen I
6.4.5 Erfassen größerer Spannungen II
6.5 Allgemeine Anmerkungen
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>7</th>
<th>Anwendungen</th>
<th>199</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>LC-Displays</td>
<td>199</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Die Hardware</td>
<td>200</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Projekt 07_01_LCD</td>
<td>202</td>
</tr>
<tr>
<td>7.2</td>
<td>7-Segment-Anzeigen</td>
<td>223</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Kein Datenblatt verfügbar?</td>
<td>225</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Eine Möglichkeit der Ansteuerung</td>
<td>226</td>
</tr>
</tbody>
</table>

Teil III Basiskomponenten

<table>
<thead>
<tr>
<th>8</th>
<th>NVIC, PMC, Clock Generator und SUPC</th>
<th>239</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Allgemeines zu Interrupts</td>
<td>239</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Asynchrone Ereignisse</td>
<td>240</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Der NVIC – Nested Vector Interrupt Controller</td>
<td>240</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Zuordnung der Interrupt-Quellen</td>
<td>244</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Tail Chaining</td>
<td>246</td>
</tr>
<tr>
<td>8.1.5</td>
<td>CMSIS-Funktionen für den NVIC</td>
<td>247</td>
</tr>
<tr>
<td>8.1.6</td>
<td>(Kein) Beispiel</td>
<td>249</td>
</tr>
<tr>
<td>8.1.7</td>
<td>Software-Interrupts</td>
<td>251</td>
</tr>
<tr>
<td>8.1.8</td>
<td>Tipps und Empfehlungen</td>
<td>252</td>
</tr>
<tr>
<td>8.2</td>
<td>Der Clock Generator / Taktgenerator</td>
<td>252</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Funktionen des Clock Generators</td>
<td>252</td>
</tr>
<tr>
<td>8.3</td>
<td>Der PMC – Power Management Controller</td>
<td>256</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Aufgaben des PMC</td>
<td>257</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Die Taktsignale des PMC</td>
<td>257</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Weitere Informationen zum PMC</td>
<td>259</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Ausgewählte Register des PMC</td>
<td>260</td>
</tr>
<tr>
<td>8.4</td>
<td>Der SUPC – Supply Controller</td>
<td>264</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Parallel Input/Output Controller</th>
<th>265</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Port-Register und -Betriebsarten</td>
<td>265</td>
</tr>
<tr>
<td>9.1.1</td>
<td>PIOA, PIOB und PIOC</td>
<td>266</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Die Register von PIOA, PIOB und PIOC</td>
<td>269</td>
</tr>
<tr>
<td>9.2</td>
<td>Input-Ports in der Praxis</td>
<td>289</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Das Projekt 09_01_INPUT_SAMPLE</td>
<td>290</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Das Ergebnis</td>
<td>296</td>
</tr>
<tr>
<td>Kapitel</td>
<td>Kapitelname</td>
<td>Seitenzahl</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>10</td>
<td>Timer und Counter, Teil 1</td>
<td>299</td>
</tr>
<tr>
<td>10.1</td>
<td>Real-time Timer RTT</td>
<td>300</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Projekt 10_01_RTT</td>
<td>300</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Die Register des RTT</td>
<td>313</td>
</tr>
<tr>
<td>10.2</td>
<td>RTC – Die Echtzeituhr</td>
<td>314</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Das Projekt 10_02_RTC</td>
<td>315</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Projekt 10_02_RTC_Advanced</td>
<td>320</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Die Register der RTC</td>
<td>339</td>
</tr>
<tr>
<td>10.3</td>
<td>Der Watchdog-Timer WDT</td>
<td>344</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Projekt 10_03_WDT</td>
<td>345</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Register des WDT</td>
<td>352</td>
</tr>
<tr>
<td>10.4</td>
<td>Der System-Timer SysTick</td>
<td>353</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Grundlegende Funktion</td>
<td>353</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Anwendung von SysTick</td>
<td>354</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Konfiguration des SysTick</td>
<td>355</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Register des System-Timers SysTick</td>
<td>356</td>
</tr>
<tr>
<td>10.4.5</td>
<td>SysTick-Interrupt</td>
<td>358</td>
</tr>
<tr>
<td>10.5</td>
<td>Abschlussbetrachtung</td>
<td>358</td>
</tr>
<tr>
<td>11</td>
<td>Timer und Counter, Teil 2</td>
<td>359</td>
</tr>
<tr>
<td>11.1</td>
<td>Timer/Counter, Grundlagen</td>
<td>360</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Einsatzgebiete von Timern und Countern</td>
<td>360</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Grundlegende Betrachtungen</td>
<td>361</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Triggern der Counter</td>
<td>361</td>
</tr>
<tr>
<td>11.2</td>
<td>Timer/Counter programmieren</td>
<td>362</td>
</tr>
<tr>
<td>11.2.1</td>
<td>PIO-Controller konfigurieren</td>
<td>362</td>
</tr>
<tr>
<td>11.2.2</td>
<td>PMC konfigurieren</td>
<td>365</td>
</tr>
<tr>
<td>11.2.3</td>
<td>NVIC konfigurieren</td>
<td>365</td>
</tr>
<tr>
<td>11.3</td>
<td>Die Register der Timer/Counter</td>
<td>366</td>
</tr>
<tr>
<td>11.3.1</td>
<td>TC- und TC-Channel-Register</td>
<td>366</td>
</tr>
<tr>
<td>11.4</td>
<td>Projekt 11_01_TIMER_COUNTER</td>
<td>375</td>
</tr>
<tr>
<td>11.4.1</td>
<td>global.h</td>
<td>375</td>
</tr>
<tr>
<td>11.4.2</td>
<td>tcWave.h und tcWave.c</td>
<td>376</td>
</tr>
<tr>
<td>11.4.3</td>
<td>tcCapture.h und tcCapture.c</td>
<td>383</td>
</tr>
<tr>
<td>11.4.4</td>
<td>main.c</td>
<td>385</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Teil IV Weiterführende Komponenten 389

12	Peripheral DMA Controller (PDC)	391
12.1	Prinzipieller Aufbau	391
12.1.1	Voll-Duplex-fähige Peripherie	392
12.1.2	Halb-Duplex-fähige Peripherie	392
12.1.3	Monodirektionale Peripherie	393
12.1.4	Voll-Duplex- und Halb-Duplex-Kanäle	393
12.1.5	Monodirektionale Kanäle	393
12.2	PDC-Register	393
12.2.1	Receive Pointer Register (PERIPH_RPR)	394
12.2.2	Receive Counter Register (PERIPH_RCR)	394
12.2.3	Transmit Pointer Register (PERIPH_TPR)	394
12.2.4	Transmit Counter Register (P_TCR)	394
12.2.5	Weitere Receive- und Transmit-Register	394
12.2.6	Transfer Control Register (PERIPH_PTCR)	395
12.2.7	Transfer Status Register (PERIPH_PTSR)	395
12.3	Schlussbetrachtung	395

13	PWM – Pulsweitenmodulation	397
13.1	Was ist Pulsweitenmodulation?	397
13.2	Pulsweitenmodulation – aber wozu?	398
13.3	Der PWMC der AT91SAM3S-Familie	398
13.3.1	Abhängigkeiten des PWMC	399
13.3.2	Die CMSIS-Funktion des PWMC	400
13.3.3	Zuordnung der PWM-Anschlüsse	409
13.4	Projekt 13_01_PWM	410
13.4.1	board_olimex.h	410
13.4.2	pulsedwidthmod.h	414
13.4.3	pulsedwidthmod.c	414
13.4.4	terminal.c	416
13.4.5	main.c	418
13.5	Drehzahlregelung eines DC-Motors	423
13.5.1	Dimensionierung der Schaltung	423
13.5.2	Drehrichtungswechsel	424

14	Analog und digitale Größen	425
14.1	Vereinfachte Grundlagen	425
14.2	DACC – Digital-to-Analog Converter Controller	426
14.2.1	DACC-Register	427
Inhaltsverzeichnis

14.2.2 CMSIS-Funktionen zum DACC 429
14.2.3 14_01_DACC_SIGNAL_GENERATOR_WITH_INTERRUPT 430
14.2.4 Hilfsprogramm: 14_02_TABLE_GENERATOR 434
14.3 ACC – Analog Comparator Controller 442
14.3.1 Die Register des ACC .. 443
14.3.2 CMSIS-Funktionen zum ACC 445
14.3.3 Projekt 14_03_ACC .. 446
14.4 ADC – Analog-to-Digital Converter 448
14.4.1 Eigenschaften des ADC ... 448
14.4.2 Die ADC-Register .. 449
14.4.3 CMSIS-Funktionen des ADC 457
14.4.4 Projekt 14_06_ADC_TS_UND_POTI 458

15 Serielle Kommunikation 475

15.1 Hardware .. 478
15.1.1 RS-232 (EIA 232) ... 479
15.1.2 RS-485 .. 481
15.1.3 TWI (I²C) ... 482
15.1.4 Serial Peripheral Interface (SPI) 482
15.1.5 Synchronous Serial Controller (SSC) 482

15.2 Serielle Schnittstellen der AT91SAM3S-Familie 483
15.2.1 Grundlegende Begriffe ... 483

15.3 Universal Asynchronous Receiver Transceiver (UART) 489
15.3.1 UART-Eigenschaften beim AT91SAM3S 489
15.3.2 UARTs auf dem Olimex SAM3-P256 489
15.3.3 UART-Register .. 490
15.3.4 RS232 o und Retargeting 493

15.4 Universal Synchronous Asynchronous Receiver Transceiver (USART) ... 496
15.4.1 USART-Eigenschaften beim AT91SAM3S 497
15.4.2 USARTs auf dem Olimex SAM3-P256 498
15.4.3 USART-Register .. 499

15.5 Two-wire Interface (TWI) .. 507
15.5.1 TWI-Eigenschaften beim AT91SAM3S 509
15.5.2 TWI auf dem Olimex SAM3-P256 509
15.5.3 TWI-Register .. 509
Inhaltsverzeichnis

16 Serielle Schnittstellen II ... 515
16.1 SD Card (stark vereinfacht) .. 515
 16.1.1 Ausführungsformen und Anschlüsse 516
 16.1.2 Versorgung und Stromaufnahme 517
 16.1.3 Speicherkapazitäten und Zugriffsraten 517
16.2 SD-Karten im SPI-Modus .. 518
 16.2.1 Grundlagen zum SPI .. 518
 16.2.2 Initialisierung des SPI 518
 16.2.3 Lesen und Schreiben von Rohdaten 536
16.3 High Speed MultiMedia Card Interface (HSMCI) 538
 16.3.1 Merkmale des HSMCI 538
 16.3.2 Informationen zu den Protokollen 539
 16.3.3 Anschluss eines SD-Kartenslots 540
 16.3.4 Die HSMCI-Register 540
 16.3.5 Hinweis zur Nutzung des HSMCI 543
16.4 Synchronous Serial Controller (SSC) 543
 16.4.1 Merkmale des SSC 544
 16.4.2 Die wichtigsten Register des SSC 545
A Glossar .. 547
A.1 Architektur ... 547
A.2 ARM ... 547
A.3 ARM-Befehlssatz ... 547
A.4 Big.LITTLE-Konzept ... 548
A.5 BSS .. 548
A.6 CMSIS ... 548
A.7 Cortex ... 548
A.8 Debugging ... 549
A.9 Echtzeit-Betriebssysteme .. 549
A.10 Embedded Linux ... 549
A.11 FIFO ... 550
A.12 Firmware ... 550
A.13 Heap ... 550
A.14 JTAG ... 550
A.15 LIFO ... 551
A.16 OCD ... 551
A.17 SAM-BA ... 551
A.18 Stack ... 551

2014 by Verlagsguppe Hüthig Jehle Rehm GmbH, Heidelberg.
Nähere Informationen unter: http://www.mitp.de/9475
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.19</td>
<td>SWD</td>
<td>552</td>
</tr>
<tr>
<td>A.20</td>
<td>TDMI</td>
<td>552</td>
</tr>
<tr>
<td>A.21</td>
<td>Text-Segment</td>
<td>552</td>
</tr>
<tr>
<td>A.22</td>
<td>Thumb-Befehlssatz</td>
<td>553</td>
</tr>
<tr>
<td>B</td>
<td>Ressourcen</td>
<td>555</td>
</tr>
<tr>
<td>B.1</td>
<td>Hardware</td>
<td>555</td>
</tr>
<tr>
<td>B.2</td>
<td>Software</td>
<td>556</td>
</tr>
<tr>
<td>C</td>
<td>Literatur</td>
<td>559</td>
</tr>
<tr>
<td>C.1</td>
<td>Literatur (Buchversion)</td>
<td>559</td>
</tr>
<tr>
<td>C.2</td>
<td>Literatur (Online-Version)</td>
<td>559</td>
</tr>
<tr>
<td>C.3</td>
<td>Weitere allgemeine Quellen</td>
<td>561</td>
</tr>
<tr>
<td>D</td>
<td>Erfahrungen</td>
<td>563</td>
</tr>
<tr>
<td>D.1</td>
<td>Wechsel der Toolchain</td>
<td>563</td>
</tr>
<tr>
<td>D.2</td>
<td>GNU Tools for ARM Embedded Processors</td>
<td>563</td>
</tr>
<tr>
<td>D.3</td>
<td>Nochmals: Verwendung der Nano-Libs</td>
<td>564</td>
</tr>
<tr>
<td>D.4</td>
<td>Updates von Eclipse und dem CDT</td>
<td>564</td>
</tr>
<tr>
<td>D.5</td>
<td>Andere Probleme mit Eclipse und dem CDT</td>
<td>564</td>
</tr>
<tr>
<td>D.6</td>
<td>Debugger</td>
<td>565</td>
</tr>
<tr>
<td>D.7</td>
<td>Versionsverwaltung</td>
<td>565</td>
</tr>
<tr>
<td>Stichwortverzeichnis</td>
<td></td>
<td>566</td>
</tr>
</tbody>
</table>